Papers
Topics
Authors
Recent
2000 character limit reached

On low treewidth graphs and supertrees

Published 28 Feb 2014 in cs.DM and cs.DS | (1402.7224v1)

Abstract: Compatibility of unrooted phylogenetic trees is a well studied problem in phylogenetics. It asks to determine whether for a set of k input trees there exists a larger tree (called a supertree) that contains the topologies of all k input trees. When any such supertree exists we call the instance compatible and otherwise incompatible. It is known that the problem is NP-hard and FPT, although a constructive FPT algorithm is not known. It has been shown that whenever the treewidth of an auxiliary structure known as the display graph is strictly larger than the number of input trees, the instance is incompatible. Here we show that whenever the treewidth of the display graph is at most 2, the instance is compatible. Furthermore, we give a polynomial-time algorithm to construct a supertree in this case. Finally, we demonstrate both compatible and incompatible instances that have display graphs with treewidth 3, highlighting that the treewidth of the display graph is (on its own) not sufficient to determine compatibility.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.