Papers
Topics
Authors
Recent
Search
2000 character limit reached

On formality of Sasakian manifolds

Published 27 Feb 2014 in math.DG and math.AT | (1402.6861v3)

Abstract: We investigate some topological properties, in particular formality, of compact Sasakian manifolds. Answering some questions raised by Boyer and Galicki, we prove that all higher (than three) Massey products on any compact Sasakian manifold vanish. Hence, higher Massey products do obstruct Sasakian structures. Using this we produce a method of constructing simply connected K-contact non-Sasakian manifolds. On the other hand, for every $n \geq 3$, we exhibit the first examples of simply connected compact Sasakian manifolds of dimension $2n + 1$ which are non-formal. They are non-formal because they have a non-zero triple Massey product. We also prove that arithmetic lattices in some simple Lie groups cannot be the fundamental group of a compact Sasakian manifold.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.