Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform boundedness and long-time asymptotics for the two-dimensional Navier-Stokes equations in an infinite cylinder (1402.6563v1)

Published 26 Feb 2014 in math.AP

Abstract: We study the incompressible Navier-Stokes equations in the two-dimensional strip $\mathbb{R} \times [0,L]$, with periodic boundary conditions and no exterior forcing. If the initial velocity is bounded, we prove that the solution remains uniformly bounded for all times, and that the vorticity distribution converges to zero as $t \to \infty$. We deduce that, after a transient period, a laminar regime emerges in which the solution rapidly converges to a shear flow governed by the one-dimensional heat equation. Our approach is constructive and gives explicit estimates on the size of the solution and the lifetime of the turbulent period in terms of the initial Reynolds number.

Summary

We haven't generated a summary for this paper yet.