Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double affine Hecke algebras and generalized Jones polynomials (1402.6032v2)

Published 25 Feb 2014 in math.QA and math.RT

Abstract: In this paper, we propose and discuss implications of a general conjecture that there is a canonical action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein module of the complement of a knot $K \subset S3$. We prove this in a number of nontrivial cases, including all $(2,2p+1)$ torus knots, the figure eight knot, and all 2-bridge knots (when $q=\pm 1$). As the main application of the conjecture, we construct 3-variable polynomial knot invariants that specialize to the classical colored Jones polynomials introduced by Reshetikhin and Turaev in \cite{RT90}. We also deduce some new properties of the classical Jones polynomials and prove that these hold for all knots (independently of the conjecture). We furthermore conjecture that the skein module of the unknot is a submodule of the skein module of an arbitrary knot. We confirm this for the same example knots, and we show that this implies the colored Jones polynomials of $K$ satisfy an inhomogeneous recursion relation.

Summary

We haven't generated a summary for this paper yet.