Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modified Linear Projection for Large Spatial Data Sets

Published 24 Feb 2014 in stat.ME | (1402.5847v2)

Abstract: Recent developments in engineering techniques for spatial data collection such as geographic information systems have resulted in an increasing need for methods to analyze large spatial data sets. These sorts of data sets can be found in various fields of the natural and social sciences. However, model fitting and spatial prediction using these large spatial data sets are impractically time-consuming, because of the necessary matrix inversions. Various methods have been developed to deal with this problem, including a reduced rank approach and a sparse matrix approximation. In this paper, we propose a modification to an existing reduced rank approach to capture both the large- and small-scale spatial variations effectively. We have used simulated examples and an empirical data analysis to demonstrate that our proposed approach consistently performs well when compared with other methods. In particular, the performance of our new method does not depend on the dependence properties of the spatial covariance functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.