Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral representation and sharp asymptotic results for some Heckman-Opdam hypergeometric functions of type BC (1402.5793v1)

Published 24 Feb 2014 in math.RT, math-ph, math.CA, and math.MP

Abstract: The Heckman-Opdam hypergeometric functions of type BC extend classical Jacobi functions in one variable and include the spherical functions of non-compact Grassmann manifolds over the real, complex or quaternionic numbers. There are various limit transitions known for such hypergeometric functions. In the present paper, we use an explicit form of the Harish-Chandra integral representation as well as an interpolated variant, in order to obtain limit results for three continuous classes of hypergeometric functions of type BC which are distinguished by explicit, sharp and uniform error bounds. The first limit realizes the approximation of the spherical functions of infinite dimensional Grassmannians of fixed rank; here hypergeometric functions of type A appear as limits. The second limit is a contraction limit towards Bessel functions of Dunkl type.

Summary

We haven't generated a summary for this paper yet.