Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Nonlinear Distance Metric Learning via Forests of Max-Margin Cluster Hierarchies (1402.5565v1)

Published 23 Feb 2014 in stat.ML, cs.IR, and cs.LG

Abstract: Metric learning is a key problem for many data mining and machine learning applications, and has long been dominated by Mahalanobis methods. Recent advances in nonlinear metric learning have demonstrated the potential power of non-Mahalanobis distance functions, particularly tree-based functions. We propose a novel nonlinear metric learning method that uses an iterative, hierarchical variant of semi-supervised max-margin clustering to construct a forest of cluster hierarchies, where each individual hierarchy can be interpreted as a weak metric over the data. By introducing randomness during hierarchy training and combining the output of many of the resulting semi-random weak hierarchy metrics, we can obtain a powerful and robust nonlinear metric model. This method has two primary contributions: first, it is semi-supervised, incorporating information from both constrained and unconstrained points. Second, we take a relaxed approach to constraint satisfaction, allowing the method to satisfy different subsets of the constraints at different levels of the hierarchy rather than attempting to simultaneously satisfy all of them. This leads to a more robust learning algorithm. We compare our method to a number of state-of-the-art benchmarks on $k$-nearest neighbor classification, large-scale image retrieval and semi-supervised clustering problems, and find that our algorithm yields results comparable or superior to the state-of-the-art, and is significantly more robust to noise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. David M. Johnson (1 paper)
  2. Caiming Xiong (338 papers)
  3. Jason J. Corso (71 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.