Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the distinctness of binary sequences derived from $2$-adic expansion of m-sequences over finite prime fields (1402.4590v1)

Published 19 Feb 2014 in cs.IT and math.IT

Abstract: Let $p$ be an odd prime with $2$-adic expansion $\sum_{i=0}kp_i\cdot2i$. For a sequence $\underline{a}=(a(t)){t\ge 0}$ over $\mathbb{F}{p}$, each $a(t)$ belongs to ${0,1,\ldots, p-1}$ and has a unique $2$-adic expansion $$a(t)=a_0(t)+a_1(t)\cdot 2+\cdots+a_{k}(t)\cdot2k,$$ with $a_i(t)\in{0, 1}$. Let $\underline{a_i}$ denote the binary sequence $(a_i(t)){t\ge 0}$ for $0\le i\le k$. Assume $i_0$ is the smallest index $i$ such that $p{i}=0$ and $\underline{a}$ and $\underline{b}$ are two different m-sequences generated by a same primitive characteristic polynomial over $\mathbb{F}p$. We prove that for $i\neq i_0$ and $0\le i\le k$, $\underline{a_i}=\underline{b_i}$ if and only if $\underline{a}=\underline{b}$, and for $i=i_0$, $\underline{a{i_0}}=\underline{b_{i_0}}$ if and only if $\underline{a}=\underline{b}$ or $\underline{a}=-\underline{b}$. Then the period of $\underline{a_i}$ is equal to the period of $\underline{a}$ if $i\ne i_0$ and half of the period of $\underline{a}$ if $i=i_0$. We also discuss a possible application of the binary sequences $\underline{a_i}$.

Summary

We haven't generated a summary for this paper yet.