Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Mixing of Coloring Random Graphs (1402.4556v1)

Published 19 Feb 2014 in cs.DS and math.CO

Abstract: We study the strong spatial mixing (decay of correlation) property of proper $q$-colorings of random graph $G(n, d/n)$ with a fixed $d$. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as $G(n, d/n)$, an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for $q\ge\alpha d+\beta$ with $\alpha>2$ and sufficiently large $\beta=O(1)$, with high probability proper $q$-colorings of random graph $G(n, d/n)$ exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree.

Citations (5)

Summary

We haven't generated a summary for this paper yet.