Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalar extensions of derived categories and non-Fourier-Mukai functors (1402.4506v2)

Published 18 Feb 2014 in math.AG

Abstract: Orlov's famous representability theorem asserts that any fully faithful functor between the derived categories of coherent sheaves on smooth projective varieties is a Fourier-Mukai functor. This result has been extended by Lunts and Orlov to include functors from perfect complexes to quasi-coherent complexes. In this paper we show that the latter extension is false without the full faithfulness hypothesis. Our results are based on the properties of scalar extensions of derived categories, whose investigation was started by Pawel Sosna and the first author.

Summary

We haven't generated a summary for this paper yet.