Papers
Topics
Authors
Recent
2000 character limit reached

Palindromic Width of Wreath Products

Published 18 Feb 2014 in math.GR | (1402.4345v1)

Abstract: We show that the wreath product $G \wr \mathbb{Z}n$ of any finitely generated group $G$ with $\mathbb{Z}n$ has finite palindromic width. We also show that $C \wr A$ has finite palindromic width if $C$ has finite commutator width and $A$ is a finitely generated infinite abelian group. Further we prove that if $H$ is a non-abelian group with finite palindromic width and $G$ any finitely generated group, then every element of the subgroup $G' \wr H$ can be expressed as a product of uniformly boundedly many palindromes. From this we obtain that $P \wr H$ has finite palindromic width if $P$ is a perfect group and further that $G \wr F$ has finite palindromic width for any finite, non-abelian group $F$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.