Papers
Topics
Authors
Recent
2000 character limit reached

Sums of Squares on the Hypercube

Published 18 Feb 2014 in math.AG and math.OC | (1402.4199v1)

Abstract: Let X be a finite set of points in Rn. A polynomial p nonnegative on X can be written as a sum of squares of rational functions modulo the vanishing ideal I(X). From the point of view of applications, such as polynomial optimization, we are interested in rational function representations of small degree. We derive a general upper bound in terms of the Hilbert function of X, and we show that this upper bound is tight for the case of quadratic functions on the hypercube C={0,1}n, a very well studied case in combinatorial optimization. Using the lower bounds for C we construct a family of globally nonnegative quartic polynomials, which are not sums of squares of rational functions of small degree. To our knowledge this is the first construction for Hilbert's 17th problem of a family of polynomials of bounded degree which need increasing degrees in rational function representations as the number of variables n goes to infinity. We note that representation theory of the symmetric group S_n play a crucial role in our proofs of the lower bounds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.