Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstructing the world trade multiplex: the role of intensive and extensive biases (1402.4171v3)

Published 17 Feb 2014 in q-fin.GN and physics.soc-ph

Abstract: In economic and financial networks, the strength of each node has always an important economic meaning, such as the size of supply and demand, import and export, or financial exposure. Constructing null models of networks matching the observed strengths of all nodes is crucial in order to either detect interesting deviations of an empirical network from economically meaningful benchmarks or reconstruct the most likely structure of an economic network when the latter is unknown. However, several studies have proved that real economic networks and multiplexes are topologically very different from configurations inferred only from node strengths. Here we provide a detailed analysis of the World Trade Multiplex by comparing it to an enhanced null model that simultaneously reproduces the strength and the degree of each node. We study several temporal snapshots and almost one hundred layers (commodity classes) of the multiplex and find that the observed properties are systematically well reproduced by our model. Our formalism allows us to introduce the (static) concept of extensive and intensive bias, defined as a measurable tendency of the network to prefer either the formation of extra links or the reinforcement of link weights, with respect to a reference case where only strengths are enforced. Our findings complement the existing economic literature on (dynamic) intensive and extensive trade margins. More in general, they show that real-world multiplexes can be strongly shaped by layer-specific local constraints.

Summary

We haven't generated a summary for this paper yet.