Papers
Topics
Authors
Recent
2000 character limit reached

Reverse lexicographic Gröbner bases and strongly Koszul toric rings

Published 14 Feb 2014 in math.AC and math.CO | (1402.3532v2)

Abstract: Restuccia and Rinaldo proved that a standard graded $K$-algebra $K[x_1, ... x_n]/I$ is strongly Koszul if the reduced Gr\"obner basis of $I$ with respect to any reverse lexicographic order is quadratic. In this paper, we give a sufficient condition for a toric ring $K[A]$ to be strongly Koszul in terms of the reverse lexicographic Gr\"obner bases of its toric ideal $I_A$. This is a partial extension of a result given by Restuccia and Rinaldo. In addition, we show that any strongly Koszul toric ring generated by squarefree monomials is compressed. Using this fact, we show that our sufficient condition for $K[A]$ to be strongly Koszul is both necessary and sufficient when $K[A]$ is generated by squarefree monomials.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.