Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Monte Carlo based Multiple Testing (1402.3019v4)

Published 13 Feb 2014 in stat.ME

Abstract: We are concerned with a situation in which we would like to test multiple hypotheses with tests whose p-values cannot be computed explicitly but can be approximated using Monte Carlo simulation. This scenario occurs widely in practice. We are interested in obtaining the same rejections and non-rejections as the ones obtained if the p-values for all hypotheses had been available. The present article introduces a framework for this scenario by providing a generic algorithm for a general multiple testing procedure. We establish conditions which guarantee that the rejections and non-rejections obtained through Monte Carlo simulations are identical to the ones obtained with the p-values. Our framework is applicable to a general class of step-up and step-down procedures which includes many established multiple testing corrections such as the ones of Bonferroni, Holm, Sidak, Hochberg or Benjamini-Hochberg. Moreover, we show how to use our framework to improve algorithms available in the literature in such a way as to yield theoretical guarantees on their results. These modifications can easily be implemented in practice and lead to a particular way of reporting multiple testing results as three sets together with an error bound on their correctness, demonstrated exemplarily using a real biological dataset.

Citations (13)

Summary

We haven't generated a summary for this paper yet.