Graph-based Multivariate Conditional Autoregressive Models
Abstract: The conditional autoregressive model is a routinely used statistical model for areal data that arise from, for instances, epidemiological, socio-economic or ecological studies. Various multivariate conditional autoregressive models have also been extensively studied in the literature and it has been shown that extending from the univariate case to the multivariate case is not trivial. The difficulties lie in many aspects, including validity, interpretability, flexibility and computational feasibility of the model. In this paper, we approach the multivariate modeling from an element-based perspective instead of the traditional vector-based perspective. We focus on the joint adjacency structure of elements and discuss graphical structures for both the spatial and non-spatial domains. We assume that the graph for the spatial domain is generally known and fixed while the graph for the non-spatial domain can be unknown and random. We propose a very general specification for the multivariate conditional modeling and then focus on three special cases, which are linked to well known models in the literature. Bayesian inference for parameter learning and graph learning is provided for the focused cases, and finally, an example with public health data is illustrated.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.