Papers
Topics
Authors
Recent
2000 character limit reached

On circular-arc graphs having a model with no three arcs covering the circle

Published 11 Feb 2014 in cs.DM and math.CO | (1402.2641v1)

Abstract: An interval graph is the intersection graph of a finite set of intervals on a line and a circular-arc graph is the intersection graph of a finite set of arcs on a circle. While a forbidden induced subgraph characterization of interval graphs was found fifty years ago, finding an analogous characterization for circular-arc graphs is a long-standing open problem. In this work, we study the intersection graphs of finite sets of arcs on a circle no three of which cover the circle, known as normal Helly circular-arc graphs. Those circular-arc graphs which are minimal forbidden induced subgraphs for the class of normal Helly circular-arc graphs were identified by Lin, Soulignac, and Szwarcfiter, who also posed the problem of determining the remaining minimal forbidden induced subgraphs. In this work, we solve their problem, obtaining the complete list of minimal forbidden induced subgraphs for the class of normal Helly circular-arc graphs.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.