Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle (1402.2268v2)

Published 5 Feb 2014 in math.CV and math.CA

Abstract: With the aim of derive a quasi-monomiality formulation in the context of discrete hypercomplex variables, one will amalgamate through a Clifford-algebraic structure of signature $(0,n)$ the umbral calculus framework with Lie-algebraic symmetries. The exponential generating function ({\bf EGF}) carrying the {\it continuum} Dirac operator $D=\sum_{j=1}n\e_j\partial_{x_j}$ together with the Lie-algebraic representation of raising and lowering operators acting on the lattice $h\BZn$ is used to derive the corresponding hypercomplex polynomials of discrete variable as Appell sets with membership on the space Clifford-vector-valued polynomials. Some particular examples concerning this construction such as the hypercomplex versions of falling factorials and the Poisson-Charlier polynomials are introduced. Certain applications from the view of interpolation theory and integral transforms are also discussed.

Summary

We haven't generated a summary for this paper yet.