Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rough metrics on manifolds and quadratic estimates (1402.2030v3)

Published 10 Feb 2014 in math.AP and math.FA

Abstract: We study the persistence of quadratic estimates related to the Kato square root problem across a change of metric on smooth manifolds by defining a class of Riemannian-like metrics that are permitted to be of low regularity and degenerate on sets of measure zero. We also demonstrate how to transmit quadratic estimates between manifolds which are homeomorphic and locally bi-Lipschitz. As a consequence, we demonstrate the invariance of the Kato square root problem under Lipschitz transformations of the space and obtain solutions to this problem on functions and forms on compact manifolds with a continuous metric. Furthermore, we show that a lower bound on the injectivity radius is not a necessary condition to solve the Kato square root problem.

Summary

We haven't generated a summary for this paper yet.