Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Nonparametric Hypothesis Testing Approach for Regression Discontinuity Designs (1402.1909v1)

Published 9 Feb 2014 in stat.ME

Abstract: The regression discontinuity (RD) design is a popular approach to causal inference in non-randomized studies. This is because it can be used to identify and estimate causal effects under mild conditions. Specifically, for each subject, the RD design assigns a treatment or non-treatment, depending on whether or not an observed value of an assignment variable exceeds a fixed and known cutoff value. In this paper, we propose a Bayesian nonparametric regression modeling approach to RD designs, which exploits a local randomization feature. In this approach, the assignment variable is treated as a covariate, and a scalar-valued confounding variable is treated as a dependent variable (which may be a multivariate confounder score). Then, over the model's posterior distribution of locally-randomized subjects that cluster around the cutoff of the assignment variable, inference for causal effects are made within this random cluster, via two-group statistical comparisons of treatment outcomes and non-treatment outcomes. We illustrate the Bayesian nonparametric approach through the analysis of a real educational data set, to investigate the causal link between basic skills and teaching ability.

Summary

We haven't generated a summary for this paper yet.