Papers
Topics
Authors
Recent
2000 character limit reached

Minimizing the Probability of Lifetime Ruin Under Ambiguity Aversion

Published 8 Feb 2014 in math.OC, math.PR, and q-fin.PM | (1402.1809v2)

Abstract: We determine the optimal robust investment strategy of an individual who targets at a given rate of consumption and seeks to minimize the probability of lifetime ruin when she does not have perfect confidence in the drift of the risky asset. Using stochastic control, we characterize the value function as the unique classical solution of an associated Hamilton-Jacobi-Bellman (HJB) equation, obtain feedback forms for the optimal investment and drift distortion, and discuss their dependence on various model parameters. In analyzing the HJB equation, we establish the existence and uniqueness of viscosity solution using Perron's method, and then upgrade regularity by working with an equivalent convex problem obtained via the Cole-Hopf transformation. We show the original value function may lose convexity for a class of parameters and the Isaacs condition may fail. Numerical examples are also included to illustrate our results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.