Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Duality Transform for Constructing Small Grid Embeddings of 3d Polytopes (1402.1660v3)

Published 7 Feb 2014 in cs.CG and math.MG

Abstract: We study the problem of how to obtain an integer realization of a 3d polytope when an integer realization of its dual polytope is given. We focus on grid embeddings with small coordinates and develop novel techniques based on Colin de Verdi`ere matrices and the Maxwell-Cremona lifting method. We show that every truncated 3d polytope with n vertices can be realized on a grid of size O(n{9log(6)+1}). Moreover, for every simplicial 3d polytope with n vertices with maximal vertex degree {\Delta} and vertices placed on an L x L x L grid, a dual polytope can be realized on an integer grid of size O(n L{3\Delta + 9}). This implies that for a class C of simplicial 3d polytopes with bounded vertex degree and polynomial size grid embedding, the dual polytopes of C can be realized on a polynomial size grid as well.

Citations (2)

Summary

We haven't generated a summary for this paper yet.