Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Twitter to Model the EUR/USD Exchange Rate (1402.1624v1)

Published 7 Feb 2014 in q-fin.ST and cs.CY

Abstract: Fast, global, and sensitively reacting to political, economic and social events of any kind, these are attributes that social media like Twitter share with foreign exchange markets. The leading assumption of this paper is that information which can be distilled from public debates on Twitter has predictive content for exchange rate movements. This assumption prompted a Twitter-based exchange rate model that harnesses regARIMA analyses for short-term out-of-sample ex post forecasts of the daily closing prices of EUR/USD spot exchange rates. The analyses used Tweet counts collected from January 1, 2012 - September 27, 2013. To identify concepts mentioned on Twitter with a predictive potential the analysis followed a 2-step selection. Firstly, a heuristic qualitative analysis assembled a long list of 594 concepts, e.g., Merkel, Greece, Cyprus, crisis, chaos, growth, unemployment expected to covary with the ups and downs of the EUR/USD exchange rate. Secondly, cross-validation using window averaging with a fixed-sized rolling origin was deployed to select concepts and corresponding univariate time series that had error scores below chance level as defined by the random walk model. With regard to a short list of 17 concepts (covariates), in particular SP (Standard & Poor's) and risk, the out-of-sample predictive accuracy of the Twitter-based regARIMA model was found to be repeatedly better than that obtained from both the random walk model and a random noise covariate in 1-step ahead forecasts of the EUR/USD exchange rate. This advantage was evident on the level of forecast error metrics (MSFE, MAE) when a majority vote over different estimation windows was conducted. The results challenge the semi-strong form of the efficient market hypothesis (Fama, 1970, 1991) which when applied to the FX market maintains that all publicly available information is already integrated into exchange rates.

Citations (6)

Summary

We haven't generated a summary for this paper yet.