Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaking a monad-comonad symmetry between computational effects (1402.1051v1)

Published 5 Feb 2014 in cs.LO and math.CT

Abstract: Computational effects may often be interpreted in the Kleisli category of a monad or in the coKleisli category of a comonad. The duality between monads and comonads corresponds, in general, to a symmetry between construction and observation, for instance between raising an exception and looking up a state. Thanks to the properties of adjunction one may go one step further: the coKleisli-on-Kleisli category of a monad provides a kind of observation with respect to a given construction, while dually the Kleisli-on-coKleisli category of a comonad provides a kind of construction with respect to a given observation. In the previous examples this gives rise to catching an exception and updating a state. However, the interpretation of computational effects is usually based on a category which is not self-dual, like the category of sets. This leads to a breaking of the monad-comonad duality. For instance, in a distributive category the state effect has much better properties than the exception effect. This remark provides a novel point of view on the usual mechanism for handling exceptions. The aim of this paper is to build an equational semantics for handling exceptions based on the coKleisli-on-Kleisli category of the monad of exceptions. We focus on n-ary functions and conditionals. We propose a programmer's language for exceptions and we prove that it has the required behaviour with respect to n-ary functions and conditionals.

Citations (21)

Summary

We haven't generated a summary for this paper yet.