Papers
Topics
Authors
Recent
Search
2000 character limit reached

An alternative representation for pure symmetric states of qubits and its applications to entanglement classification

Published 5 Feb 2014 in quant-ph | (1402.0987v3)

Abstract: We prove that the vast majority of symmetric states of qubits can be decomposed in a unique way into a superposition of spin 1/2 coherent states. For the case of two qubits, the proposed decomposition reproduces the Schmidt decomposition and therefore, in the case of a higher number of qubits, can be considered as its generalization. We analyze the geometrical aspects of the proposed representation and its invariant properties under the action of local unitary and local invertible transformations. As an application, we identify the most general classes of entanglement and representative states for any number of qubits in a symmetric state.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.