Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing SPARQL Query Answering over OWL Ontologies (1402.0576v1)

Published 4 Feb 2014 in cs.DB and cs.AI

Abstract: The SPARQL query language is currently being extended by the World Wide Web Consortium (W3C) with so-called entailment regimes. An entailment regime defines how queries are evaluated under more expressive semantics than SPARQLs standard simple entailment, which is based on subgraph matching. The queries are very expressive since variables can occur within complex concepts and can also bind to concept or role names. In this paper, we describe a sound and complete algorithm for the OWL Direct Semantics entailment regime. We further propose several novel optimizations such as strategies for determining a good query execution order, query rewriting techniques, and show how specialized OWL reasoning tasks and the concept and role hierarchy can be used to reduce the query execution time. For determining a good execution order, we propose a cost-based model, where the costs are based on information about the instances of concepts and roles that are extracted from a model abstraction built by an OWL reasoner. We present two ordering strategies: a static and a dynamic one. For the dynamic case, we improve the performance by exploiting an individual clustering approach that allows for computing the cost functions based on one individual sample from a cluster. We provide a prototypical implementation and evaluate the efficiency of the proposed optimizations. Our experimental study shows that the static ordering usually outperforms the dynamic one when accurate statistics are available. This changes, however, when the statistics are less accurate, e.g., due to nondeterministic reasoning decisions. For queries that go beyond conjunctive instance queries we observe an improvement of up to three orders of magnitude due to the proposed optimizations.

Citations (57)

Summary

We haven't generated a summary for this paper yet.