Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Decision Number of Graphs (1402.0134v2)

Published 1 Feb 2014 in cs.DM and math.CO

Abstract: Let $G$ be a graph. A good function is a function $f:V(G)\rightarrow {-1,1}$, satisfying $f(N(v))\geq 1$, for each $v\in V(G)$, where $ N(v)={u\in V(G)\, |\, uv\in E(G) } $ and $f(S) = \sum_{u\in S} f(u)$ for every $S \subseteq V(G) $. For every cubic graph $G$ of order $ n, $ we prove that $ \gamma(G) \leq \frac{5n}{7} $ and show that this inequality is sharp. A function $f:V(G)\rightarrow {-1,1}$ is called a nice function, if $f(N[v])\le1$, for each $v\in V(G)$, where $ N[v]={v} \cup N(v) $. Define $\overline{\beta}(G)=max{f(V(G))}$, where $f$ is a nice function for $G$. We show that $\overline\beta(G)\ge -\frac{3n}{7}$ for every cubic graph $G$ of order $n$, which improves the best known bound $-\frac{n}{2}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. S. Akbari (23 papers)
  2. M. Dalirrooyfard (2 papers)
  3. S. Davodpoor (1 paper)
  4. K. Ehsani (2 papers)
  5. R. Sherkati (2 papers)

Summary

We haven't generated a summary for this paper yet.