Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lie, symplectic and Poisson groupoids and their Lie algebroids (1402.0059v1)

Published 1 Feb 2014 in math.DG

Abstract: Groupoids are mathematical structures able to describe symmetry properties more general than those described by groups. They were introduced (and named) by H. Brandt in 1926. Around 1950, Charles Ehresmann used groupoids with additional structures (topological and differentiable) as essential tools in topology and differential geometry. In recent years, Mickael Karasev, Alan Weinstein and Stanis{\l}aw Zakrzewski independently discovered that symplectic groupoids can be used for the construction of noncommutative deformations of the algebra of smooth functions on a manifold, with potential applications to quantization. Poisson groupoids were introduced by Alan Weinstein as generalizations of both Poisson Lie groups and symplectic groupoids. We present here the main definitions and first properties relative to groupoids, Lie groupoids, Lie algebroids, symplectic and Poisson groupoids and their Lie algebroids.

Summary

We haven't generated a summary for this paper yet.