Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linking Rigid Bodies Symmetrically (1402.0039v1)

Published 1 Feb 2014 in math.MG and math.CO

Abstract: The mathematical theory of rigidity of body-bar and body-hinge frameworks provides a useful tool for analyzing the rigidity and flexibility of many articulated structures appearing in engineering, robotics and biochemistry. In this paper we develop a symmetric extension of this theory which permits a rigidity analysis of body-bar and body-hinge structures with point group symmetries. The infinitesimal rigidity of body-bar frameworks can naturally be formulated in the language of the exterior (or Grassmann) algebra. Using this algebraic formulation, we derive symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of body-bar frameworks with Abelian point group symmetries in an arbitrary dimension. In particular, from the patterns of these new matrices, we derive combinatorial characterizations of infinitesimally rigid body-bar frameworks which are generic with respect to a point group of the form $\mathbb{Z}/2\mathbb{Z}\times \dots \times \mathbb{Z}/2\mathbb{Z}$. Our characterizations are given in terms of packings of bases of signed-graphic matroids on quotient graphs. Finally, we also extend our methods and results to body-hinge frameworks with Abelian point group symmetries in an arbitrary dimension. As special cases of these results, we obtain combinatorial characterizations of infinitesimally rigid body-hinge frameworks with $\mathcal{C}_2$ or $\mathcal{D}_2$ symmetry - the most common symmetry groups found in proteins.

Summary

We haven't generated a summary for this paper yet.