Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifying Latent Infection States in Complex Networks (1402.0013v1)

Published 31 Jan 2014 in cs.SI and physics.soc-ph

Abstract: Algorithms for identifying the infection states of nodes in a network are crucial for understanding and containing infections. Often, however, only a relatively small set of nodes have a known infection state. Moreover, the length of time that each node has been infected is also unknown. This missing data -- infection state of most nodes and infection time of the unobserved infected nodes -- poses a challenge to the study of real-world cascades. In this work, we develop techniques to identify the latent infected nodes in the presence of missing infection time-and-state data. Based on the likely epidemic paths predicted by the simple susceptible-infected epidemic model, we propose a measure (Infection Betweenness) for uncovering these unknown infection states. Our experimental results using machine learning algorithms show that Infection Betweenness is the most effective feature for identifying latent infected nodes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.