Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Propositional Logics Complexity and the Sub-Formula Property (1401.8209v3)

Published 31 Jan 2014 in cs.LO

Abstract: In 1979 Richard Statman proved, using proof-theory, that the purely implicational fragment of Intuitionistic Logic (M-imply) is PSPACE-complete. He showed a polynomially bounded translation from full Intuitionistic Propositional Logic into its implicational fragment. By the PSPACE-completeness of S4, proved by Ladner, and the Goedel translation from S4 into Intuitionistic Logic, the PSPACE- completeness of M-imply is drawn. The sub-formula principle for a deductive system for a logic L states that whenever F1,...,Fk proves A, there is a proof in which each formula occurrence is either a sub-formula of A or of some of Fi. In this work we extend Statman result and show that any propositional (possibly modal) structural logic satisfying a particular formulation of the sub-formula principle is in PSPACE. If the logic includes the minimal purely implicational logic then it is PSPACE-complete. As a consequence, EXPTIME-complete propositional logics, such as PDL and the common-knowledge epistemic logic with at least 2 agents satisfy this particular sub-formula principle, if and only if, PSPACE=EXPTIME. We also show how our technique can be used to prove that any finitely many-valued logic has the set of its tautologies in PSPACE.

Citations (16)

Summary

We haven't generated a summary for this paper yet.