Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Statistical Machine Translation for a Resource-Poor Language Using Related Resource-Rich Languages (1401.6876v1)

Published 23 Jan 2014 in cs.CL

Abstract: We propose a novel language-independent approach for improving machine translation for resource-poor languages by exploiting their similarity to resource-rich ones. More precisely, we improve the translation from a resource-poor source language X_1 into a resource-rich language Y given a bi-text containing a limited number of parallel sentences for X_1-Y and a larger bi-text for X_2-Y for some resource-rich language X_2 that is closely related to X_1. This is achieved by taking advantage of the opportunities that vocabulary overlap and similarities between the languages X_1 and X_2 in spelling, word order, and syntax offer: (1) we improve the word alignments for the resource-poor language, (2) we further augment it with additional translation options, and (3) we take care of potential spelling differences through appropriate transliteration. The evaluation for Indonesian- >English using Malay and for Spanish -> English using Portuguese and pretending Spanish is resource-poor shows an absolute gain of up to 1.35 and 3.37 BLEU points, respectively, which is an improvement over the best rivaling approaches, while using much less additional data. Overall, our method cuts the amount of necessary "real training data by a factor of 2--5.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Preslav Ivanov Nakov (3 papers)
  2. Hwee Tou Ng (44 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.