Papers
Topics
Authors
Recent
Search
2000 character limit reached

Simple Error Bounds for Regularized Noisy Linear Inverse Problems

Published 25 Jan 2014 in math.OC, cs.IT, math.IT, math.ST, and stat.TH | (1401.6578v1)

Abstract: Consider estimating a structured signal $\mathbf{x}0$ from linear, underdetermined and noisy measurements $\mathbf{y}=\mathbf{A}\mathbf{x}_0+\mathbf{z}$, via solving a variant of the lasso algorithm: $\hat{\mathbf{x}}=\arg\min\mathbf{x}{ |\mathbf{y}-\mathbf{A}\mathbf{x}|_2+\lambda f(\mathbf{x})}$. Here, $f$ is a convex function aiming to promote the structure of $\mathbf{x}_0$, say $\ell_1$-norm to promote sparsity or nuclear norm to promote low-rankness. We assume that the entries of $\mathbf{A}$ are independent and normally distributed and make no assumptions on the noise vector $\mathbf{z}$, other than it being independent of $\mathbf{A}$. Under this generic setup, we derive a general, non-asymptotic and rather tight upper bound on the $\ell_2$-norm of the estimation error $|\hat{\mathbf{x}}-\mathbf{x}_0|_2$. Our bound is geometric in nature and obeys a simple formula; the roles of $\lambda$, $f$ and $\mathbf{x}_0$ are all captured by a single summary parameter $\delta(\lambda\partial((f(\mathbf{x}_0)))$, termed the Gaussian squared distance to the scaled subdifferential. We connect our result to the literature and verify its validity through simulations.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.