Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Identification of Overcomplete Dictionaries (1401.6354v2)

Published 24 Jan 2014 in cs.IT, math.IT, and stat.ML

Abstract: This paper presents the first theoretical results showing that stable identification of overcomplete $\mu$-coherent dictionaries $\Phi \in \mathbb{R}{d\times K}$ is locally possible from training signals with sparsity levels $S$ up to the order $O(\mu{-2})$ and signal to noise ratios up to $O(\sqrt{d})$. In particular the dictionary is recoverable as the local maximum of a new maximisation criterion that generalises the K-means criterion. For this maximisation criterion results for asymptotic exact recovery for sparsity levels up to $O(\mu{-1})$ and stable recovery for sparsity levels up to $O(\mu{-2})$ as well as signal to noise ratios up to $O(\sqrt{d})$ are provided. These asymptotic results translate to finite sample size recovery results with high probability as long as the sample size $N$ scales as $O(K3dS \tilde \varepsilon{-2})$, where the recovery precision $\tilde \varepsilon$ can go down to the asymptotically achievable precision. Further, to actually find the local maxima of the new criterion, a very simple Iterative Thresholding and K (signed) Means algorithm (ITKM), which has complexity $O(dKN)$ in each iteration, is presented and its local efficiency is demonstrated in several experiments.

Citations (43)

Summary

We haven't generated a summary for this paper yet.