Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates

Published 22 Jan 2014 in math.AP | (1401.5669v1)

Abstract: In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absense of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, etc. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending compoment is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovski\u{i} operator for irrotational vector fields which we discuss in the appendix.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.