Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dirichlet-Laplace priors for optimal shrinkage (1401.5398v1)

Published 21 Jan 2014 in math.ST and stat.TH

Abstract: Penalized regression methods, such as $L_1$ regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimensions. This has motivated an amazing variety of continuous shrinkage priors, which can be expressed as global-local scale mixtures of Gaussians, facilitating computation. In sharp contrast to the frequentist literature, little is known about the properties of such priors and the convergence and concentration of the corresponding posterior distribution. In this article, we propose a new class of Dirichlet--Laplace (DL) priors, which possess optimal posterior concentration and lead to efficient posterior computation exploiting results from normalized random measure theory. Finite sample performance of Dirichlet--Laplace priors relative to alternatives is assessed in simulated and real data examples.

Summary

We haven't generated a summary for this paper yet.