Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congruences for the Fishburn Numbers (1401.5345v1)

Published 21 Jan 2014 in math.NT

Abstract: The Fishburn numbers, $\xi(n),$ are defined by a formal power series expansion $$ \sum_{n=0}\infty \xi(n)qn = 1 + \sum_{n=1}\infty \prod_{j=1}n (1-(1-q)j). $$ For half of the primes $p$, there is a non--empty set of numbers $T(p)$ lying in $[0,p-1]$ such that if $j\in T(p),$ then for all $n\geq 0,$ $$ \xi(pn+j)\equiv 0 \pmod{p}. $$

Summary

We haven't generated a summary for this paper yet.