Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy (1401.5266v2)

Published 21 Jan 2014 in cs.LO

Abstract: It is shown that for any fixed $i>0$, the $\Sigma_{i+1}$-fragment of Presburger arithmetic, i.e., its restriction to $i+1$ quantifier alternations beginning with an existential quantifier, is complete for $\mathsf{\Sigma}{\mathsf{EXP}}_{i}$, the $i$-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between $\mathsf{NEXP}$ and $\mathsf{EXPSPACE}$. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the $\Sigma_1$-fragment of Presburger arithmetic: given a $\Sigma_1$-formula $\Phi(x)$, it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.

Citations (50)

Summary

We haven't generated a summary for this paper yet.