Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Valuations in Gödel Logic, and the Euler Characteristic (1401.5254v1)

Published 21 Jan 2014 in cs.LO, cs.DM, and math.LO

Abstract: Using the lattice-theoretic version of the Euler characteristic introduced by V. Klee and G.-C. Rota in the Sixties, we define the Euler characteristic of a formula in G\"{o}del logic (over finitely or infinitely many truth-values). We then prove that the information encoded by the Euler characteristic is classical, i.e. coincides with the analogous notion defined over Boolean logic. Building on this, we define many-valued versions of the Euler characteristic of a formula $\varphi$, and prove that they indeed provide information about the logical status of $\varphi$ in G\"{o}del logic. Specifically, our first main result shows that the many-valued Euler characteristics are invariants that separate many-valued tautologies from non-tautologies. Further, we offer an initial investigation of the linear structure of these generalised characteristics. Our second main result is that the collection of many-valued characteristics forms a linearly independent set in the real vector space of all valuations of G\"{o}del logic over finitely many propositional variables.

Citations (5)

Summary

We haven't generated a summary for this paper yet.