Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Common Information based Markov Perfect Equilibria for Linear-Gaussian Games with Asymmetric Information (1401.4786v1)

Published 20 Jan 2014 in cs.SY, cs.GT, and math.OC

Abstract: We consider a class of two-player dynamic stochastic nonzero-sum games where the state transition and observation equations are linear, and the primitive random variables are Gaussian. Each controller acquires possibly different dynamic information about the state process and the other controller's past actions and observations. This leads to a dynamic game of asymmetric information among the controllers. Building on our earlier work on finite games with asymmetric information, we devise an algorithm to compute a Nash equilibrium by using the common information among the controllers. We call such equilibria common information based Markov perfect equilibria of the game, which can be viewed as a refinement of Nash equilibrium in games with asymmetric information. If the players' cost functions are quadratic, then we show that under certain conditions a unique common information based Markov perfect equilibrium exists. Furthermore, this equilibrium can be computed by solving a sequence of linear equations. We also show through an example that there could be other Nash equilibria in a game of asymmetric information, not corresponding to common information based Markov perfect equilibria.

Citations (43)

Summary

We haven't generated a summary for this paper yet.