Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering, Coding, and the Concept of Similarity (1401.2411v2)

Published 10 Jan 2014 in cs.LG

Abstract: This paper develops a theory of clustering and coding which combines a geometric model with a probabilistic model in a principled way. The geometric model is a Riemannian manifold with a Riemannian metric, ${g}_{ij}({\bf x})$, which we interpret as a measure of dissimilarity. The probabilistic model consists of a stochastic process with an invariant probability measure which matches the density of the sample input data. The link between the two models is a potential function, $U({\bf x})$, and its gradient, $\nabla U({\bf x})$. We use the gradient to define the dissimilarity metric, which guarantees that our measure of dissimilarity will depend on the probability measure. Finally, we use the dissimilarity metric to define a coordinate system on the embedded Riemannian manifold, which gives us a low-dimensional encoding of our original data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.