Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimates for multilinear commutators of generalized fractional integral operators on weighted Morrey spaces (1401.1912v1)

Published 9 Jan 2014 in math.FA

Abstract: Let $L$ be the infinitesimal generator of an analytic semigroup on $L2(\mathbb{R}n)$ with Gaussian kernel bounds, and let $L{-\alpha/2}$ be the fractional integrals of $L$ for $0<\alpha<n$. Assume that $\vec{b}=(b_1,b_2,\cdots,b_m)$ is a finite family of locally integrable functions, then the multilinear commutators generated by $\vec{b}$ and $L{-\alpha/2}$ is defined by \begin{equation*} L_{\vec{b}}{-\alpha/2}f=[b_m,\cdots,[b_2,[b_1,L{-\alpha/2}]],\cdots,]f \end{equation*} when $b_j\in BMO(w)$, $j=1,2,\cdots,m$, the authors obtain the boundedness of $L_{\vec{b}}{-\alpha/2}$ on weighted Morrey spaces.

Summary

We haven't generated a summary for this paper yet.