Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadrature Compressive Sampling for Radar Signals (1401.1346v1)

Published 7 Jan 2014 in cs.IT and math.IT

Abstract: Quadrature sampling has been widely applied in coherent radar systems to extract in-phase and quadrature (I and Q) components in the received radar signal. However, the sampling is inefficient because the received signal contains only a small number of significant target signals. This paper incorporates the compressive sampling (CS) theory into the design of the quadrature sampling system, and develops a quadrature compressive sampling (QuadCS) system to acquire the I and Q components with low sampling rate. The QuadCS system first randomly projects the received signal into a compressive bandpass signal and then utilizes the quadrature sampling to output compressive I and Q components. The compressive outputs are used to reconstruct the I and Q components. To understand the system performance, we establish the frequency domain representation of the QuadCS system. With the waveform-matched dictionary, we prove that the QuadCS system satisfies the restricted isometry property with overwhelming probability. For K target signals in the observation interval T, simulations show that the QuadCS requires just O(Klog(BT/K)) samples to stably reconstruct the signal, where B is the signal bandwidth. The reconstructed signal-to-noise ratio decreases by 3dB for every octave increase in the target number K and increases by 3dB for every octave increase in the compressive bandwidth. Theoretical analyses and simulations verify that the proposed QuadCS is a valid system to acquire the I and Q components in the received radar signals.

Citations (38)

Summary

We haven't generated a summary for this paper yet.