Papers
Topics
Authors
Recent
2000 character limit reached

Nonunimodular Lorentzian flat Lie algebras

Published 5 Jan 2014 in math.DG | (1401.0950v2)

Abstract: A Lorentzian flat Lie group is a Lie group $G$ with a flat left invariant metric $\mu$ with signature $(1,n-1)=(-,+,\ldots,+)$. The Lie algebra $\mathfrak{g}=T_eG$ of $G$ endowed with $\langle\;,\;\rangle=\mu(e)$ is called flat Lorentzian Lie algebra. It is known that the metric of a flat Lorentzian Lie group is geodesically complete if and only if its Lie algebra is unimodular. In this paper, we characterise nonunimodular Lorentzian flat Lie algebras as double extensions (in the sense of Aubert-Medina \cite{Aub-Med}) of Riemannian flat Lie algebras. As application of this result, we give all nonunimodular Lorentzian flat Lie algebras up to dimension 4.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.