Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved RIP-Based Performance Guarantee for Sparse Signal Recovery via Orthogonal Matching Pursuit (1401.0578v1)

Published 3 Jan 2014 in cs.IT and math.IT

Abstract: A sufficient condition reported very recently for perfect recovery of a K-sparse vector via orthogonal matching pursuit (OMP) in K iterations is that the restricted isometry constant of the sensing matrix satisfies delta_K+1<1/(sqrt(delta_K+1)+1). By exploiting an approximate orthogonality condition characterized via the achievable angles between two orthogonal sparse vectors upon compression, this paper shows that the upper bound on delta can be further relaxed to delta_K+1<(sqrt(1+4*delta_K+1)-1)/(2K).This result thus narrows the gap between the so far best known bound and the ultimate performance guarantee delta_K+1<1/(sqrt(delta_K+1)) that is conjectured by Dai and Milenkovic in 2009. The proposed approximate orthogonality condition is also exploited to derive less restricted sufficient conditions for signal reconstruction in several compressive sensing problems, including signal recovery via OMP in a noisy environment, compressive domain interference cancellation, and support identification via the subspace pursuit algorithm.

Citations (96)

Summary

We haven't generated a summary for this paper yet.