Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid NN/HMM Modeling Technique for Online Arabic Handwriting Recognition (1401.0486v1)

Published 2 Jan 2014 in cs.CV

Abstract: In this work we propose a hybrid NN/HMM model for online Arabic handwriting recognition. The proposed system is based on Hidden Markov Models (HMMs) and Multi Layer Perceptron Neural Networks (MLPNNs). The input signal is segmented to continuous strokes called segments based on the Beta-Elliptical strategy by inspecting the extremum points of the curvilinear velocity profile. A neural network trained with segment level contextual information is used to extract class character probabilities. The output of this network is decoded by HMMs to provide character level recognition. In evaluations on the ADAB database, we achieved 96.4% character recognition accuracy that is statistically significantly important in comparison with character recognition accuracies obtained from state-of-the-art online Arabic systems.8

Citations (25)

Summary

We haven't generated a summary for this paper yet.