Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Order Maximum Principle Preserving Semi-Lagrangian Finite Difference WENO schemes for the Vlasov Equation (1401.0076v2)

Published 31 Dec 2013 in math.NA

Abstract: In this paper, we propose the parametrized maximum principle preserving (MPP) flux limiter, originally developed in [Z. Xu, Math. Comp., (2013), in press], to the semi- Lagrangian finite difference weighted essentially non-oscillatory scheme for solving the Vlasov equation. The MPP flux limiter is proved to maintain up to fourth order accuracy for the semi-Lagrangian finite difference scheme without any time step restriction. Numerical studies on the Vlasov-Poisson system demonstrate the performance of the proposed method and its ability in preserving the positivity of the probability distribution function while maintaining the high order accuracy.

Summary

We haven't generated a summary for this paper yet.