Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved bounds on maximum sets of letters in sequences with forbidden alternations (1401.0063v2)

Published 31 Dec 2013 in math.CO and cs.DM

Abstract: Let $A_{s,k}(m)$ be the maximum number of distinct letters in any sequence which can be partitioned into $m$ contiguous blocks of pairwise distinct letters, has at least $k$ occurrences of every letter, and has no subsequence forming an alternation of length $s$. Nivasch (2010) proved that $A_{5, 2d+1}(m) = \theta( m \alpha_{d}(m))$ for all fixed $d \geq 2$. We show that $A_{s+1, s}(m) = \binom{m- \lceil \frac{s}{2} \rceil}{\lfloor \frac{s}{2} \rfloor}$ for all $s \geq 2$, $A_{5, 6}(m) = \theta(m \log \log m)$, and $A_{5, 2d+2}(m) = \theta(m \alpha_{d}(m))$ for all fixed $d \geq 3$.

Summary

We haven't generated a summary for this paper yet.