Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Sensing in Social Networks (1312.7630v1)

Published 30 Dec 2013 in cs.SI, math.OC, and physics.soc-ph

Abstract: This paper presents models and algorithms for interactive sensing in social networks where individuals act as sensors and the information exchange between individuals is exploited to optimize sensing. Social learning is used to model the interaction between individuals that aim to estimate an underlying state of nature. In this context the following questions are addressed: How can self-interested agents that interact via social learning achieve a tradeoff between individual privacy and reputation of the social group? How can protocols be designed to prevent data incest in online reputation blogs where individuals make recommendations? How can sensing by individuals that interact with each other be used by a global decision maker to detect changes in the underlying state of nature? When individual agents possess limited sensing, computation and communication capabilities, can a network of agents achieve sophisticated global behavior? Social and game theoretic learning are natural settings for addressing these questions. This article presents an overview, insights and discussion of social learning models in the context of data incest propagation, change detection and coordination of decision making.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vikram Krishnamurthy (114 papers)
  2. H. Vincent Poor (884 papers)

Summary

We haven't generated a summary for this paper yet.