Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the geometry of motions in one integrable problem of the rigid body dynamics (1312.6774v1)

Published 24 Dec 2013 in nlin.SI, math-ph, and math.MP

Abstract: Due to Poinsot's theorem, the motion of a rigid body about a fixed point is represented as rolling without slipping of the moving hodograph of the angular velocity over the fixed one. If the moving hodograph is a closed curve, visualization of motion is obtained by the method of P.V.Kharlamov. For an arbitrary motion in an integrable problem with an axially symmetric force field the moving hodograph densely fills some two-dimensional surface and the fixed one fills a three-dimensional surface. In this paper, we consider the irreducible integrable case in which both hodographs are two-frequency curves. We obtain the equations of bearing surfaces, illustrate the main types of the surfaces. We propose a method of the so-called non-straight geometric interpretation representing the motion of a body as a superposition of two periodic motions.

Summary

We haven't generated a summary for this paper yet.